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Abstract. The interaction of a gravitational wave with an oscillating EM field inside a 
detector is analysed in the frame in which the detector’s walls are at rest. The interaction 
is described in terms of a time-dependent dielectric tensor and the energy transfer is 
derived from a generalised Poynting theorem. The energy transfer is maximum when the 
GW frequency matches one of the frequencies of quadrupole moment of the EM field. 
Provided the Q-value of the detector is sufficiently high this method seems particulary 
suitable for observing GW’S emitted by periodic sources. 

1. Introduction 

The first experimental attempt to detect gravitational waves (GW) (Weber 1969) was 
sensitive to frequencies of the order of 1 kHz which are supposed to be present only in 
the bursts of gravitational energy emitted during supernova collapses. Essentially the 
same frequency range has been investigated in subsequent experiments conducted in 
the Soviet Union (Braginskii et a1 1972), in the United Kingdom (Drever et a1 1973), 
in the United States (Tyson 1973, Levine and Garwin 1973), in Western Europe 
(Bramanti and Maischberger 1972, Billing et a1 1975), and in Japan (Hirakawa and 
Narihara 1975). 

The detectors used in all these experiments are mechanical quadrupole antennas 
which can resonate at the gravitational frequency. The power absorbed is pro- 
portional to the gravitational energy flux. Other types of detectors, based on the 
interaction between the GW and the electromagnetic field, have been suggested by 
Braginskii and Menskii (1971).0 The power absorbed by them is proportional to the 
gravitational energy flux, or to its square root, depending on the initial state of the EM 
field (Braginskii et a1 1974). The obvious advantage of the electromagnetic detectors 
is that they can easily be tuned on a wider range of frequencies than the mechanical 
ones and thus be made to respond either to the relatively high frequencies present in 
the gravitational bursts emitted during stellar collapses or to the low frequencies 
emitted by continuous periodic sources such as rotating neutron stars and close binary 
systems. The fluxes in the latter case are considerably smaller than those expected 
from stellar collapses but, since the emission is continuous, one can take advantage of 
the possibility of repeating the experiment to reduce the noise-to-signal ratio. 

9: Permanent address: Scuola Normale Superiore, 56100 Pisa, Italy. 
VThe interaction between the EM field and a static gravitational field has recently been discussed by 
Braginskii et al (1977) in connection with post-Newtonian effects. 

0305-4770/78/0010-1949$02.00 @ 1978 The Institute of Physics 1949 
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To compare different sources it  is convenient to define the dimensionless quantityt 
i 
1 

h = - ( 3 2 ~ r G I ) ” ~  n 
where G is the gravitational constant, I is the energy flux and 
of the GW. Another way of writing h is 

the angular frequency 

h = GM,,/r (1.2) 

i.e. as the gravitational potential produced by an equivalent mass at the distance r of 
the source. The equivalent mass Meq is given in terms of the quadrupole moment D of 
the source by 

The values of h and I for a few typical sources are given in table 1 (see, e.g., Press and 
Thorne 1972, Drever 1977, Amaldi and Pizzella 1978). 

Table 1. 

Source h fl(rad s-’) I (erg cm-2 s-’) 

Extragalactic supernovae 2 x 1 0 - ~ * - 1 0 - ~ ~  103-105 104-10 
Crab pulsar 377 3 x io-’ 

HZ 29 3.6  X 1.2 x 10-2 3 x 10-l0 
Iota Bootes 6 x lo-’’ 5 . 4 ~  1 0 - ~  1.8 X lo-’’ 

The maximum value of h for the Crab pulsar corresponds to the implausible 
assumption that the gravitational braking be of the same order as the electromagnetic 
braking, The actual value can be several orders of magnitude smaller. The two 
binaries in table 1 have h’s of the same order of magnitude as the extragalactic 
supernovae, but frequencies at least five orders of magnitude smaller. 

In the following sections we shall analyse the possibility of detecting these GW’S 
through their effect on the electromagnetic field enclosed inside the detector. We will 
describe the change of the EM field due to the combined effect of the modification of 
the boundary conditions and of the direct interaction between the EM field and the 
GW’S in terms of a dielectric and magnetic susceptibility tensor E which is related to the 
metric tensor. Moreover, we shall concentrate on the detectors in which the power 
exchanged between the detector and the GW is proportional to the square root of the 
incoming gravitational flux. It will be shown that the power exchanged is proportional 
to the EM energy WO in the detector and is given by: 

P = A tr (un)Wo. (1.4) 
Here A is a dimensionless coefficient which depends upon the mechanical properties 
of the detector, a is the correction to the metric tensor due to the GW in the transverse 
traceless gauge, I3 is the dimensionless quadrupole moment associated with the 
configuration of the EM field and the dot denotes time derivative. 

t We shall set the velocity of light equal to one. 
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The configurations of the detectors that we will discuss consist of two arms at right 
angles between which the energy oscillates at the frequency of the GW, a. In this way 
we obtain a resonance between the frequency of the EM energy and the time variation 
of a .  Since U is proportional to h R ,  the leading contribution to the energy absorbed 
by the detector during time T is 

A W - A WO h 0 7  

where the maximum value of T is of the order of the detector’s relaxation time. 
Equations (1.4) and (1.5) are valid provided P<c ZL2 where L is the characteristic 

size of the detector. This condition is easily satisfied in all cases we shall consider. 
In the simplified case when the mechanical properties of the detector are described 

in terms of a single frequency wm and a relaxation time 1/(2ym) the coefficient A of 
equations (1.4) and (1.5) becomes 

or 

In writing these relations we have neglected terms of order L 2 0 2  which, for all the 
detectors we shall discuss, are negligibly small. As one can see from equation (1.6), 
the case of rigid walls, where wm>>sZ, leads to a strong reduction of the power 
absorbed. 

2. Power exchange 

2.1. The rest frame 

The power exchanged between the GW and the EM field inside a detector (equation 
(1.4)) can be split into two terms: a direct one arising from the interaction of the GW 
with the EM field, and an indirect one due to the effect which the motion of the 
detector’s walls has on the EM field through the change of the boundary conditions. 
The indirect interaction vanishes in the coordinate system in which the walls are at rest 
(rest frame). This frame depends in a complicated way upon the geometrical structure 
and the mechanical properties of the detector. We will only consider the simplified 
case in which the detector’s walls are treated as a system of equal particles elastically 
bound to the centre of mass. 

We shall analyse the interaction between the GW and the EM field in the rest frame 
of the detector to first order in the amplitude h of the GW. We shall assume that the 
size of the detector is small compared to the wavelength of the GW and neglect terms 
of order h(OL)2 in the metric tensor in the rest frame. The relation between the 
definition of the rest frame and the mechanical properties of the detector is derived in 
the appendix together with the corrections due to the finite size of the detector. 

Consider a coordinate system x ” ( A )  depending on a parameter A determined in 
such a way as to transform away the motion of the detector’s walls induced by the GW. 
This frame satisfies the following conditions: 



1952 F Pegoraro, E Picasso and L A Radicati 

(i) In the absence of the GW it reduces to the same Minkowski frame. 
(ii) The origin coincides with the centre of mass of the detector. 

(iii) The wavevector k, of the GW is k, = (ko, 0 ,  0, - k 3 ) ,  where k o  = k3 = R is the 

(iv) The metric tensor g,,(A) is of the form? 
GW’S frequency. 

where 77,” is the Minkowski tensor and h,,(A), which represents the contribution of 
the GW, is of the form 

10 0 0 o\  
h,,(A)= (2A - 1) [ 0 a21 :\+O(hR2L2) 

\o 0 0 11 

where 

aij = h Re( P ) ail = aii, Tr U = 0 
P --cy 

with i ,  j = 1,2 and 

In the simplified case when the detector can be treated as a system of oscillators with 
frequency w ,  and relaxation time 7, = ?ym, the value of A which corresponds to the 
rest frame of the detector is given by (see appendix) 

1 

if wm # 0 and by 

if the resonance condition w m  = R is met. In the latter case the phases 0, and Op in 
equation (2.4) are shifted by ~ / 2 .  

2.2. The dielectric tensor 

As is well known a GW propagating in vacuum induces a time-dependent dielectric 
tensor proportional to its amplitude. This dielectric tensor depends upon the 
reference frame and we will calculate it in the rest frame. In this frame the indirect 
interaction vanishes and the effect of the GW on the EM field is entirely taken into 
account by the dielectric tensor. 

t We shall use the sign convention (+, - ,  -, -); Greek indices run from 0 to 3, Latin indices from 1 to 2 ;  
summation over repeated indices is implied. 
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Let us define as usual (Landau and Lifshitz 1962) the electric field E = (E , ,  E2, E3) 
and magnetic flux density B = (B1, B2, B3) by 

where FFy is the EM field tensor. The displacement D = ( D ’ ,  D 2 ,  0’) and the 
magnetic field H = ( H ’ ,  H 2 ,  H 3 )  are defined by 

, 0 -D’ - D 2  - D 3 \  

! D 3  H 2  - H ’  0 1 / 

From (2.7), (2.8) and (2.2) i t  follows that 

where i, j = 1 , 2  and 

~~l = - [q’j + ( 1  - 2A )a ” ]  

pij = - [qi j  + (I  - 2A )aii]. 
(2.10) 

The value of each component of the dielectric tensor E ”  is equal to the cor- 
responding component of the magnetic permeability tensor grl .  The corrections to 
equations (2.9) and (2.10) which are introduced by the finite size of the detector are 
given in the appendix. 

Equations (2.10) show that the dielectric tensor in the rest frame depends upon the 
mechanical properties of the detector: in the A = $  frame it reduces to the identity, 
whereas in the free-falling frame (A = 0) we have 

cl’= - (q l ’+a l ’ ) .  (2.11) 

In the case corresponding to equation (2.6) (a = U,), the dielectric tensor becomes 

E ” =  -[q1’+2Q,a’’(8,-.rr/2, 8,-7~/2)]. (2.12) 

The correction to the vacuum value of the dielectric tensor, -q”, reduces in this 
case to the product of the mechanical quality factor 0, of the detector times the 
amplitude of the GW. Due to the resonance, the tensor a” appears in equations (2.12) 
with phases shifted by 7r/2 with respect to the phases 8, and 8, of the GW. 

2.3. The Poynting theorem 

The fields E ,  B, D, H defined in 0 2.2 satisfy the standard Maxwell equations (with 
x = ( x  , x , x 3 ) ,  t = x’ ) .  From them one derives the Poynting theorem in the usual 
way: 

1 2  

i a  1 
2 at 2 

div(ExH)+-- (E.  D + B .  H)= - -Tr(PT)-47~j .  E. (2.13) 
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Here j = (j', I * ,  j 3 )  is the current density, Tii are the components of the energy- 
momentum tensor in the (1-2) plane and 

Tr(kT) = i i iTi j  
= -( 1 - 2 A  )U iiTij 

(2.14) 

In deriving equation (2.14) we have made use of equations (2.10) which, as shown in 
the appendix, are correct up to terms of order h (RL)'. 

To derive the power exchanged between the GW and the detector we integrate 
equation (2.13) over the volume of the detector. Assuming that E X  B vanishes on the 
walls, we obtain 

d W/dt = W Tr(iII)- W (2.15) 

1-2A 
8 n  

I - -- [ci& + E :  -B: -E:)+2cilZ(BlB2+E1E2)]. 

where 

W = -  d 3 x ( E . D + B . H )  (2.16) 
8 n  l 1  

is the EM energy inside the detector; 

and 

~ ~ M = - l d l x j . E .  2 
W 

(2.17) 

(2.18) 

Equation (2.15) has been obtained by neglecting terms of order h n L  due to the x 3  
dependence of e. 

The tensor II, which in general depends upon time, represents the (dimensionless) 
quadrupole moment of the EM field in the detector, and ~ / Y E M  is the EM relaxation 
time of the detector. 

The second term in the right-hand side of equation (2.15), which is due to the 
losses of the detector, is, in all realistic cases, much larger than the first one which 
arises from the interaction with the GW. 

Integrating equation (2.15) we get 

w ( t >  = w0( 1 + J 'Tr(i(t ' )n(t))  dr') exp(- YEMt) (2.19) 

where WO is the EM energy in the detector at t = O .  The second term in the large 
parentheses, which is correct only to first order in ~R/YEM<< 1, depends upon the 
intensity, the polarisation, the phases and the frequency of the GW, through i and 
upon the geometry of the detector through the quadrupole moment rI. This term 
changes sign when the configuration of the detector is rotated by n /2  around the x 3  
axis. This behaviour reflects the rotational properties of the spin-two carried by the 
GW. 
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Let us define 

A W ( t )  = W(t,  h ) -  W(t,  0) = WO exp( - Y E M ~ )  Tr(i(t’)II(t’)) dt’ (2.20) 
Jo‘ 

which represents the difference between the energy in the detector at time t with and 
without the GW. 

For t > l /n  the integral in the right-hand side of equation (2.20) is largest when the 
frequency of the GW coincides with one of the frequencies of the quadrupole moment 
II. In this case A W can be written in the form 

1 
AW(t)= wo(1-2A)hn(pt +nf(f)) eXp(-YEMf) (2.21) 

where 
+ .-T ] Tr( i  (t‘)II(t’))  dt‘ p = lim - 1 

T-XCThn 0 
(2.22) 

is a parameter which measures the efficiency of the detector and f( t )  is an oscillating 
function. For t - l/yEM the oscillating function can be neglected provided 

RP Ifl<-- 
YEM 

and the maximum value of A W becomes: 

n 
YEM 

A W = h -  Wop(1-2h). 

To determine the explicit form of p let 
i r X  

dt cos(nt)n(t) 

(2.23) 

(2.24) 

(2.25) 

be the Fourier component of n at the frequency of the GW. From equation (2.22) it 
follows that: 

(2.26) 

(2.27) 

is the invariant ‘length’ of II, and g (lgl S 1) is a function of the phases and the 
polarisations of the GW. 

We remark that the energy transfer given in equation (2.21) represents the 
combined effect of the direct and indirect interactions between the GW and the 
detector. As we have already stated these two contributions are entirely described, in 
the rest frame, by the time variation of the dielectric constant. 

3. Resonant detectors 

In this section we shall discuss two types of resonant EM detectors: a low-frequency 
detector where the EM frequency is equal to 0 / 2 ,  and a high-frequency one, in which 
the EM field oscillates at two frequencies U + ,  w -  >> a, such that o+ - U -  = 0. 
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Our first example is a LC circuit osciiiating at frequency w. To simplify the analysis 
we assume that EM energy and the quadrupole moment can be calculated with 
sufficient approximation from the following field configuration: 

E = Eo COS w f  (COS C$E, sin 4 ~ ,  0) 

B = Bo sin wt(cos 4B, sin 48, 0) 

where Eo and Bo are constant inside the volumes VE and VB of the capacitor and of 
the coil respectively, and vanish outside them. They satisfy the condition 

E;IB: = v B / v E  (3.2) 

which expresses the equality of the time average of the electric and magnetic energies. 
The quadrupole moment of the field configuration specified by equation (3.1) is the 
sum of two terms, one constant in time and the other oscillating at frequency 2w: 

n(t) = no+ nZw cos 2wt. (3.3) 

To maximise the energy exchange between the EM circuit and the GW, n(f) must 
oscillate at the same frequency as i ( t ) ,  i.e. we must have w = a / 2 .  

One can easily show that the value of the invariant length of nZw for this simplified 
configuration is 

l n 2 w l  = /sin(4E-4B)I. (3.4) 

In01 = ICOS(4E -&)I (3.5) 

Similarly the invariant length of no is 

The maximum efficiency p therefore obtains when 4E - 4B = f ~ / 2 ,  i.e. when the 
electric field in the capacitor is perpendicular to the magnetic field in the coil. In this 
case ino\ = O (see figure I). 

Figure 1. Low-frequency LC resonator. 

In a more realistic case, the electric and magnetic fields of an oscillating circuit 
cannot be written in the simple form (3.1). However equations (3.4) and (3.5) remain 
true if E3 = B3 = 0, with 4~ and dB defined by 

For low-frequency GW’S the resonance condition w = 0 / 2  requires large 
inductances and capacities which make this conceptually simple detector not very 
promising in practice. This difficulty can be avoided by making the GW resonate with 
the beat frequency of two coupled LC circuits operating at high frequencies and 
therefore of manageable sizes. 
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Let w +  and U - ,  U+ > U -  be the two eigenfrequencies of the two coupled oscillators 
and let 

2w = w + + w - ,  277w = w + - w -  (3.7) 

with 77 << 1. We will distinguish with superscripts 1 and 2 the quantities referring to 
each circuit which we shall assume to be spatially separated. As in the previous case 
we will calculate the quadrupole moment with a simplified field configuration, namely: 

E ( ’ ) =  ~ b “  cos wt cos qwt(cos 4:), sin 4g), 0 )  

B‘’) = BL” cos ut sin gwt(cos +(Bz), sin +g), 0). 

As before we suppose that there is no overlap between the fields and that the time 
averages of the electric and magnetic energies are equal and equally distributed 
between the two circuits. 

The quadrupole moment for the configuration (3.8) can be written as 

n(r) = n“)(r)+ n‘’’(t) (3.9) 

where 

(3.10) 

The quadrupole moment of each circuit is of the form (3.3) multiplied by a 
low-frequency modulating factor. To obtain the maximum efficiency at the resonance 
with the beat frequency 2770, we choose the relative orientation of the electric and 
magnetic fields in each circuit in such a way that n:‘,’=n$’,’=O. This implies (see 
equation (3.4)) 

(3.11) 4g)-($$) = 4 E  (2) -4(Bz) = n r .  

We can thus rewrite equation (3.9) as: 

n(t)= n,+n,,, cos(277w) (3.12) 

where 

By the same argument used before we recognise that the maximum value of lnz,,, I 
obtains when 

i.e. when the electric fields in two circuits are at right angles. The geometry cor- 
responding to conditions (3.11) and (3.14) is sketched in figure 2. 

A more practical high-frequency detector can be realised with two cavities at right 
angles coupled in such a way that the EM energy oscillates between them at the 
frequency of the GW. 

The calculation of Il is in this case more complicated since the EM fields inside the 
cavity cannot be described by the simple formula (3.8). 
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Figure 2. High-frequency LC resonator. 

In terms of the EM quality factor Q E M = w / Y E M  the energy transfer (equation 
(2.24)) can be written for both the low- and the high-frequency detectors in the form 

(3.1.5) 
n 

A W = hp - QEM Wo(l-2A). 
w 

For the low-frequency detector, R / w  = 2, whereas the high-frequency one has R/w = 
277 K 1. In the latter case the energy transfer A W can be split into the sum of two 
terms 

(3.16) 

representing the energy transferred by the GW to the two eigenmodes of the detector 
with frequencies U + ,  w -  respectively. It can be shown that 

AW = A W+ + AW- 

d AW+ AW- -( __ + -) = (oscillating terms) 
dt  w +  w -  

(3.17) 

where the oscillating terms are of order h and have frequencies much larger than n. 
From equations (3.1.5) and (3.17) it follows that: 

(3.18) 

Therefore the energy transferred to each eigenmode is much larger than the total 
energy transfer. 

We remark that also the microwave detector suggested by Braginskii and Menskii 
(1971) can be described in terms of equation (2.15). Indeed one can show that the 
quadrupole moment Il of a wave packet with wavenumber k = k ( t )  and central 
frequency w is of the form 

nij = k ik i /w2 .  (3.19) 

The energy W of the wave packet is 

W = w N  (3.20) 

where N is the number of photons in the packet. In  the geometrical optics approxi- 
mation N is an adiabatic invariant and therefore equation (2.15), in the absence of 
absorption, reduces to 

dw i k O k  
dt 
_-  - U  T r ( 7 ) .  (3.21) 

The effect of the gravitational wave is in this case to change the average frequency of 
the wave packet. Equation (3.21) can be shown to follow directly from the geodesic 
equation for a light ray. 
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4. Conclusion 

In this paper we have analysed the principle of a detector whose response is linear in 
h. The advantage of EM detectors is that they are easily tunable over a wide range of 
frequencies. Since, to increase their sensitivity one is forced to use very high Q- 
values, the bandwidth of these detectors is correspondingly small. They are therefore 
ideal for studying monochromatic sources of known frequency. 

A limitation of a detector linear in h is the difficulty in measuring AW/W in the 
presence of a large energy in the two eigenmodes. With the present technology one 
can hope to achieve an accuracy of loW6 in A W/ W. With a Q-value of 10" which has 
already been achieved this leads to a minimum detectable h - lo-", of the same order 
of magnitude as the one obtained with mechanical detectors. An improvement in R 
by two orders of magnitude would make this detector competitive with the mechanical 
ones now under study (see e.g. Drever 1977). 

The same kind of EM detector discussed in this paper can be operated in a different 
way by loading the cavity in only one of the two eigenmodes. In this case the energy 
A W+ transferred to the empty eigenmode is proportional to h 2 Q i M  W. The advantage 
of this method of operation is that the minimum detectable energy A W ,  can be as 
small as erg. With this sensitivity and with an energy W- - lo7 erg one can reach 
h = 10-'9-10-2' with QEM = 10"-10'3 respectively. Only a detailed analysis of the 
noise and of the feasibility of the detector will decide whether this sensitivity in h can 
actually be achieved. 
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Appendix 

If one takes into account the finite size of the detector, the correction h,,(h) produced 
by the GW takes the form 

/ o  0 0 o\  i'-1 0 0 1\ 

where i, j = 1, 2 and aii is defined by equation ( 2 . 3 ) .  
The first term in the right-hand side of equation (A.1) is of order h, whereas the 

second is of order h(fiL)2,  here L is the characteristic size of the detector. The latter 
has been neglected in equation (2.2). 
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The coordinates x"(Al) and xw(A2) are related, to first order in (h2-h1)hr by the 
transformations: 

x ' ( A ~ )  = x0(A 1) + $ ( A 2 - A  i)x'dl,Xx' 

x'(A2) = x'(A - (A - A l )a  fw' (A.2) 
x3(A2) = x3(A 1) + +(A2 - A  ~)x'U~,X' 

where a' ,  = qZkak,. To the same approximation there is no need to distinguish in the 
second term in the right-hand side of equation ( 2 . 5 )  between x'(A1) and x'(A2). With 
the same argument we can drop the label A in the term x'(A)U,,x'(A) in equation (A.1). 
We remark that in equations (A.2) the second term in the equations for xo and x3 is of 
order hRL, whereas in the equation for x' the corresponding term is of order h. 

For every A the geodesic equation of the centre of mass is X I  = 0, I = 1 , 2 ,  x3 = 0. 
The square of the spatial distance between two particles in the (xl ,  x2) plane with 
coordinates x' and X I  +Ax' is: 

A12 = Ax'[q,, +(2A - 1)a , ]  Ax'. (-4.3) 

Due to the time dependence of a,,, even if two particles are at rest, their spatial 
distance varies with time for all A's different from t. 

Two values of A are of special significance: 
( a )  A = O .  In this case a free particle at rest in the absence of the GW, remains at 

rest even when the GW is turned on. This means that the system A = 0 is the 
free-falling system; = 0) is thus the metric tensor in the transverse traceless 
gauge. 

(6) A =$. In this case h,, is of order / ~ ( f l L ) ~  and the space distance between two 
points at rest in the (x1,x2) plane is constant. This is the proper reference frame 
(Misner er a1 1973) attached to an infinitely rigid detector. In this coordinate frame a 
free particle, which would be at rest in the absence of the G W ,  appears to oscillate. 

Let us now consider an idealised detector whose walls are formed by a system of 
equal particles elastically bound to the centre of mass. The system in which the 'walls' 
of this detector are at rest will be called its rest system and the corresponding value of 
A depends upon the mechanical properties of the detector. In the limit of vanishing 
binding we have A = 0, whereas for an infinitely rigid binding we have A = i. To find 
the value of A appropriate to an oscillator with frequency om we consider a particle of 
mass m, elastically bound to the centre of mass of the detector, moving under the 
influence ofthe GW. We assume that in the absence of the GW the particle is at rest in 
the (x', x*)-plane at X I  = X ' .  Let 1' be the spatial distance from the origin as defined 
in equation (A.3) of a point x '  and let l ' (x) be defined by 

li(x)qijl'(x) = P(X). 

Then, to order h, 

2A -1 
2 

I ' (x ) = x i  + - a ljX' ( ' 4 .5 )  

Under the action of the GW the particle is displaced by an amount AI' = I' -Xi of 
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order h. The restoring force is - m w i b l ' ,  where w,  is the frequency of the oscillator 
and 

hl' = 6' +- 2A-1 a ' , X ,  g = x ' - x '  
2 

The displacement A l i  is the sum of two terms: the first one represents the 
difference between the coordinate of the particle and that of the equilibrium position; 
the second is due to the change of the distance of the equilibrium position X i  from the 
centre of mass. By neglecting terms of order hv, where U is the velocity of the particle 
under the influence of the GW, the equation of motion for the particle reads: 

. g = ~ ' - ~ : b i '  
where 

A ' =  -ri o o x t = x n =  I -AU' ,X '  

and rho is a Christoffel index. Then equation (A.8) becomes: 

g+Witi  = [ A ~ * - ( A  -i)~fn]~',x'. (A.lO) 

If W ,  # 0, the right-hand side of equation (A.lO) vanishes for 

(A. 11) 

and therefore in the system with A given by (A. 11) a particle which was originally at 
rest remains at rest even in the presence of the GW. To determine the value of A which 
transforms away the forced motion due to the GW when w,  = Cl, one must introduce in 
the right-hand side of equation (A.8) a damping term - 2 ymAli and generalise the 
above discussion to the case where A is complex. The absolute value of A at resonance 
can easily be seen to be 

(A.12) 

Due to the finite size of the detector the relations between (E, B )  and (D, H )  are 
also modified. Instead of equations (2.9) and (2.10) we get 

D'= - q"(1 +ixki ikl~')El  - A " i i k l ~ ~ U k l ~ ' u ' ' B ,  - ( 1 - 2 h ) ~ " E ,  

D 3  = (1 - i A x k U k p ' ) E 3  
(A.13) 

H' = -7)"(1 - q ~ k a k l X f ) B , - A X k U k , X k a k l X k U k l X f * ' J E ,  + (1-2A)U"Bj 

H 3 = ( 1  - $ A x ~ U ~ ~ X ' ) B ~  

where 

i ,  j ,  k ,  1 = 1 ,  2 

(A.14) 

and 

U i i  - - q i k  akiqi'.  (A. 15)  

We remark that equations (2.10) are obtained from (A.13) by neglecting terms of 
order h (ClL)2. 
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